Journal of Organometallic Chemistry, 273 (1984) C4–C6 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

SYNTHESIS OF AN OSMIUM(II) COMPLEX WITH THE PIPH LIGAND AND A POSSIBLE TERMINAL PHENYLPHOSPHINIDENE COMPLEX INTERMEDIATE FROM IODIDE ABSTRACTION

D.S. BOHLE and W.R. ROPER*

Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received June 4th, 1984)

Summary

Addition of I_2 to Os(PHPh)Cl(CO)₂(PPh₃)₂ gives [OsCl(PHIPh)(CO)₂(PPh₃)₂]⁺ and deprotonation of this cation affords Os(PIPh)Cl(CO)₂(PPh₃)₂. The iodophenylphosphido complex reacts with AgSbF₆ in THF/MeOH to give [OsCl-{PH(OMe)Ph}(CO)₂(PPh₃)₂]SbF₆ suggesting the intermediacy of a phenylphosphinidene complex [Os(=PPh)Cl(CO)₂(PPh₃)₂]⁺.

Although terminal dihalophosphido complexes, $L_n M$ —PX₂, were among the first-known examples of phosphido complexes [1], a terminal monohalophosphido complex, $L_n M$ —PXR, has not been reported. Complexes of the latter type are of particular interest since they are, through halide loss, potential precursors of terminal phosphinidene complexes, $[L_n M=PR]^+$. Terminal phosphinidene complexes have been implicated as intermediates but despite several recent synthetic attempts [2-4] a stable example has not yet been isolated. We describe herein,

(1) the synthesis of an osmium(II) complex with the pyramidal PIPh ligand; (2) the nucleophilic reactivity of this molecule towards H^+ and Me^+ ; (3) the reaction with Ag^+ which leads to a product indicative of a cationic phosphinidene complex intermediate.

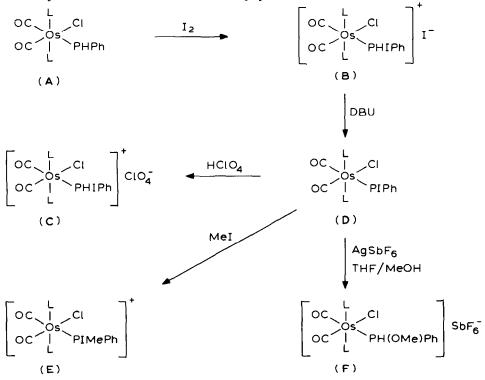

Addition of iodine to the PHPh ligand in $Os(PHPh)Cl(CO)_2(PPh_3)_2$, (A), [5] results in a cationic complex of the unusual [6] PHIPh ligand, [OsCl(PHIPh)-(CO)_2(PPh_3)_2]I (B) (see Scheme 1 and Table 1). Deprotonation of B with the non-nucleophilic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), results in Os(PIPh)Cl(CO)_2(PPh_3)_2 (D), with the novel PIPh ligand. The PHPh ligand in A has been shown by X-ray crystallography to be pyramidal and the PIPh ligand in D is assumed to have similar geometry [5]. The deprotonation of B is re-

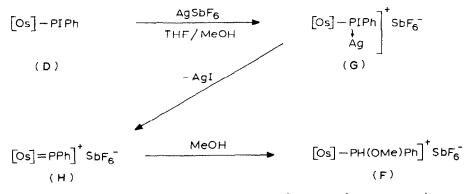
TABLE	1
-------	---

IR^a AND ¹H NMR^b DATA FOR OSMIUM COMPLEXES

Compound ^C	IR			¹ H NMR	
	ν(CO)	δ(PH)	Other bands	Chemical shifts and coupling constants	
Os(PHPh)Cl(CO) ₂ L ₂ (A)	2018, 1952	905w	2264m,v(PH)	3.70,dt,PH ¹ J(PH),196; ³ J(PH) 14 Hz	
$[O_{sCl}(PHIPh)(CO)_{2}L_{2}]I$ (B)	2060, 1991	921 w. 896 m		5.81,dt,PH ¹ J(PH),398; ³ J(PH) 7 Hz	
$Os(PIPh)Cl(CO)_2L_2$ (D)	2024, 1969	-	394w,v(PI)	-	
[OsCl(PIMePh)(CO) ₂ L ₂]ClO ₄ (E)	2055, 1997		378w,v(PI)	2.71,d,CH ₃ ² J(PH) 8 Hz	
$[O_{sCl} {PH(OMe)Ph}(CO)_{2}L_{2}]SbF_{6}$ (F)	2084, 2065 2013, 1998 ^d	903m	1020m,v(POMe)	7.61,dm,PH ¹ J(PH) 402 Hz 2.90,d,CH ₃ ³ J(PH) 12 Hz	

 a cm⁻¹ measured as Nujol mulls. All bands strong unless otherwise noted. ${}^{b}\delta$ in ppm from TMS measured in CDCl₃ except for A which was measured in C₆D₆. c All compounds have satisfactory C and H analyses (L = PPh₃). d Solid state splitting. Spectrum in CH₂Cl₂ solution has bands at 2065, 1998 cm⁻¹.

SCHEME 1. Synthesis and reactions of $Os(PIPh)Cl(CO)_2L_2$ (L = PPh₃).


versible as addition of perchloric acid to D leads to C, the perchlorate analogue of B. Thus two high-yield steps convert the PHPh ligand in A to the PIPh ligand in D. Iodine adds similarly to other pyramidal phosphido ligands [7,8].

The nucleophilicity of the phosphido ligand in D is shown also by methyla-

tion with MeI to produce $[OsCl(PIMePh)(CO)_2(PPh_3)_2]^+$, (E), which is readily crystallised as a perchlorate salt. The P-I bond in D is relatively unreactive towards alcohols, e.g., D can be purified by recrystallisation from C_6H_6 /MeOH.

With silver salts at ambient temperatures D reacts rapidly to produce an unidentified mixture of products. At low temperatures the reaction between Ag⁺ and D is less vigorous and THF suspensions of D at -78°C do not react with MeOH solutions of $AgSbF_6$ (1/1). However, on warming a sequence of distinct changes occurs beginning with dissolution of the orange complex D to give a uniform yellow solution followed by production of a yellow flocculent AgI precipitate from a colourless solution as the temperature warms to 25°C. The product from the reaction, $[OsCl{PH(OMe)Ph}](CO)_2(PPh_3)_2]SbF_6$ (F), is produced in 85% yield. EtOH solutions of $AgSbF_6$ react with D in an analogous manner to give $[OsCl{PH(OEt)Ph}(CO)_2(PPh_3)_2]SbF_6$.

Complexes of PH(OMe)Ph have been produced previously by insertion of a terminal phenylphosphinidene ligand into MeOH [2]. To account for the formation of F in the above reaction we suggest the mechanism shown in Scheme 2. Initial coordination of Ag⁺ by the terminal phosphido ligand in D would lead to a soluble cationic complex G with a bridging PIPh ligand. G would have addi-

SCHEME 2. Suggested mechanism for formation of $[OsCl{PH(OMe)Ph}(CO)_2(PPh_3)_2]^+ ([Os] \equiv$ $OsCl(CO)_2(PPh_3)_2).$

tional solvent molecules coordinated to Ag⁺ not shown in Scheme 2. Elimination of AgI from G would give a cationic terminal phenylphosphinidene complex, H, which in turn inserts into the O-H bond of MeOH to give F. Attempts to isolate H have failed to give a tractable species. A neutral rather than a cationic phenylphosphinidene complex is more likely to be isolable.

We thank Johnson-Matthey for a generous loan of OsO_4 .

References

- 1 W. Malisch and R. Alsmann, Angew. Chem. Int. Ed. Engl., 15 (1976) 769.
- A. Marinetti and F. Mathey, J. Amer. Chem. Soc., 104 (1982) 4484.
 K.M. Flynn, M.M. Olmstead and P.P. Power, J. Amer. Chem. Soc., 105 (1983) 2085.
- 4 G. Huttner, H.D. Müller, A. Frank and H. Lorenz, Angew. Chem. Int. Ed. Engl., 14 (1975) 572.
- 5 D.S. Bohle, T.C. Jones, C.E.F. Rickard and W.R. Roper, J. Chem. Soc., Chem. Comm., (1984) 865.
- 6 A. Marinetti and F. Mathey, Organometallics, 1 (1982) 1488.
- 7 R.C. Dobbie and P.R. Mason, J. Chem. Soc., Dalton Trans., (1974) 2439.
- 8 W. Malisch, R. Maisch, J.J. Colquhoun and W. McFarlane, J. Organomet. Chem., 220 (1981) C1.